- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources6
- Resource Type
-
0006000000000000
- More
- Availability
-
60
- Author / Contributor
- Filter by Author / Creator
-
-
Jialu Wang (5)
-
Yang Liu (5)
-
Eric Xin Wang (2)
-
Xin Eric Wang (2)
-
Yatong Chen, Jialu Wang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Jialu Wang; Eric Xin Wang; Yang Liu (, International Conference on Machine Learning)
-
Jialu Wang; Yang Liu; Xin Eric Wang (, Proceedings of Annual Meeting of Association for Computational Linguistics)
-
Yang Liu; Jialu Wang (, Conference on Neural Information Processing Systems)
-
Yatong Chen, Jialu Wang (, Algorithmic Recourse workshop at ICML'21)null (Ed.)Machine learning systems are often used in settings where individuals adapt their features to obtain a desired outcome. In such settings, strategic behavior leads to a sharp loss in model performance in deployment. In this work, we aim to address this problem by learning classifiers that encourage decision subjects to change their features in a way that leads to improvement in both predicted \emph{and} true outcome. We frame the dynamics of prediction and adaptation as a two-stage game, and characterize optimal strategies for the model designer and its decision subjects. In benchmarks on simulated and real-world datasets, we find that classifiers trained using our method maintain the accuracy of existing approaches while inducing higher levels of improvement and less manipulation.more » « less
-
Jialu Wang; Yang Liu; Xin Eric Wang (, Empirical Methods in Natural Language Processing)
An official website of the United States government

Full Text Available